Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Environ Res ; 248: 118342, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295980

ABSTRACT

Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.


Subject(s)
Arachis , Soil , Soil/chemistry , Agriculture/methods , Bacteria , Polyethylene
2.
Environ Microbiome ; 18(1): 78, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37876011

ABSTRACT

BACKGROUND: Leaf-associated microbes play an important role in plant development and response to exogenous stress. Insect herbivores are known to alter the phyllosphere microbiome. However, whether the host plant's defense against insects is related to the phyllosphere microbiome remains mostly elusive. Here, we investigated bacterial communities in the phyllosphere and endosphere of eight wheat cultivars with differing aphid resistance, grown in the same farmland. RESULTS: The bacterial community in both the phyllosphere and endosphere showed significant differences among most wheat cultivars. The phyllosphere was connected to more complex and stable microbial networks than the endosphere in most wheat cultivars. Moreover, the genera Pantoea, Massilia, and Pseudomonas were found to play a major role in shaping the microbial community in the wheat phyllosphere. Additionally, wheat plants showed phenotype-specific associations with the genera Massilia and Pseudomonas. The abundance of the genus Exiguobacterium in the phyllosphere exhibited a significant negative correlation with the aphid hazard grade in the wheat plants. CONCLUSION: Communities of leaf-associated microbes in wheat plants were mainly driven by the host genotype. Members of the genus Exiguobacterium may have adverse effects on wheat aphids. Our findings provide new clues supporting the development of aphid control strategies based on phyllosphere microbiome engineering.

3.
Sci Total Environ ; 892: 164532, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37270019

ABSTRACT

Microbial bioremediation is a highly effective method to degrade phthalates in the environment. However, the response of native microbial communities to the exogenously introduced microorganism remains unknown. In this study, the native fungal community was monitored by amplicon sequencing of the fungal ITS region during the restoration process of the di-n-butyl phthalate (DBP)-contaminated soils with Gordonia phthalatica QH-11T. Our results showed that the diversity, composition, and structure of the fungal community in the bioremediation treatment did not differ from the control, and no significant correlations were found between number of Gordonia and variation of fungal community. It was also observed that DBP pollution initially increased the relative abundance of plant pathogens and soil saprotrophs first, but their proportions returned to the initial level. Molecular ecological network analysis showed that DBP pollution increased the network complexity, while the network was not significantly altered by bioremediation. Overall, the introduction of Gordonia was shown to not have a long-term impact on the native soil fungal community. Therefore, this restoration method can be considered safe in terms of soil ecosystem stability. The present study provides a deeper insight into the effect of bioremediation on fungal communities and provides an extended basis to further explore the ecological risks of introducing exogenous microorganisms.


Subject(s)
Gordonia Bacterium , Mycobiome , Soil Pollutants , Dibutyl Phthalate/metabolism , Biodegradation, Environmental , Ecosystem , Soil/chemistry , Gordonia Bacterium/metabolism , Soil Pollutants/metabolism , Soil Microbiology
4.
J Hazard Mater ; 455: 131608, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37178534

ABSTRACT

Pyroxasulfone (PYR) is a widely used herbicide, but its effects on non-target organisms, particularly microorganisms, are largely unknown. Herein, we investigated the effects of various doses of PYR on the sugarcane rhizosphere microbiome by using amplicon sequencing of rRNA genes and quantitative PCR techniques. Correlation analyses indicated that several bacterial phyla (Verrucomicrobia and Rhodothermaeota) and genera (Streptomyces and Ignavibacteria) strongly responded to PYR application. Additionally, we found that both bacterial diversity and composition were significantly altered after 30 days, indicating a prolonged effect of the herbicide. Moreover, co-occurrence analyses of the bacterial community showed that the network complexity was significantly decreased by PYR at day 45. Furthermore, FAPROTAX analysis suggested that some functions with implications for carbon cycling groups were significantly altered after 30 days. Overall, we provide the first indications that PYR may not pose a significant risk for altering microbial communities in the short term (less than 30 days). However, its potential negative effects on bacterial communities in the middle and late stages of degradation deserve further attention. To our knowledge, this is the first study to provide insight into the effects of PYR on the rhizosphere microbiome, providing an extended basis for future risk assessments.


Subject(s)
Herbicides , Microbiota , Saccharum , Streptomyces , Rhizosphere , Soil Microbiology , Microbiota/genetics , Soil
5.
Chemosphere ; 334: 138926, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37182712

ABSTRACT

In situ soils were collected at two depths in Jinan and Hangzhou steel plants, which both have a long history of operation and polycyclic aromatic hydrocarbons (PAHs) contamination. The richness of 16 S rRNA gene and bacterial community of the soil were determined by real-time PCR and high-throughput sequencing. Soil physicochemical properties, PAHs contamination characteristics, and their interrelationships were also analyzed. In general, the PAHs contamination decreased with increasing soil depths. The physicochemical properties and PAH concentration of soil had synergistic impacts on the composition of the bacterial community. The long-term higher PAHs stress in Hangzhou contaminated soil (982 mg kg-1) increased the bacterial abundance and diversity, while that of Jinan contaminated soil (63 mg kg-1) decreased bacterial abundance and diversity. The pH value, sand content of the soil were positively correlated (P < 0.05) with the bacterial diversity including Simpson, Shannon, Observed_species and Chao1 indexes., and the other soil properties exhibited negative correlations with different strengths. The abundances of Curvibacter, Pseudomonas, Thiobacillus, Lysobacter, and Limnobacter were positively correlated with the PAHs concentration (P < 0.01). Additionally, the network structure of the PAHs-contaminated soils was more complex compared to that of uncontaminated soils, with stronger linkages and correlations between the different bacteria. These findings provide a theoretical basis for microbial remediation of PAHs-polluted soil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Biodegradation, Environmental , Soil Pollutants/analysis , Soil Microbiology , Bacteria/genetics
6.
Bioresour Technol ; 376: 128889, 2023 May.
Article in English | MEDLINE | ID: mdl-36931450

ABSTRACT

Phthalates are common pollutants in agriculture. Here, the influence of di-n-butyl phthalate (DBP) on multifunctionality of composting was assessed. Results indicated that DBP stress (100 mg/kg) hampered multifunctionality from the thermophilic phase onwards and resulted in a 6.5 % reduction of all assessed functions. DBP stress also significantly reduced microbial biomass (P < 0.05), altered microbial composition (P < 0.05), and decreased network complexity (P < 0.01). Multifunctionality was found to be strongly correlated (P < 0.001) with microbial biomass, diversity, and network complexity. In addition, keystone taxa responsive to DBP were identified as Streptomyces, Thermoactinomyces, Mycothermus, and Lutispora. These taxa were significantly (P < 0.001) affected by DBP stress, and a correlation between them and multifunctionality was shown. This study contributes to a better understanding of the negative implications of phthalates during composting processes, which is of great significance to the development of new treatment strategies for agricultural waste.


Subject(s)
Composting , Phthalic Acids , Dibutyl Phthalate , Biomass
7.
Heliyon ; 9(2): e13668, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36852024

ABSTRACT

Chlorantraniliprole (CAP) is an insecticide with low toxicity and high efficiency, which is widely used in agriculture in China. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different CAP concentrations on bacterial and fungal communities in soil based on high-throughput sequencing. The results showed that CAP application had no significant effect on soil bacterial and fungal diversity, but altered the bacterial and fungal community structure. In particular, the soil bacterial and fungal community structure in the low CAP concentration treatment group exhibited large variability. Compared with 0 day, the phylum level of bacteria changed at 115 days, and fungi changed at 175 days, indicating that soil microbial community might have significant correlation with CAP degradation in soil. Correlation analysis between soil properties and microbial communities showed that TN, TP, and NO3-N were three key factors that significantly influenced microbial community structure. These results provide basic data for studying the effects of pesticides on ecosystem and potential remediation strategies of polluted soil.

8.
Sci Total Environ ; 871: 162034, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36754316

ABSTRACT

Biodegradable mulch films are widely used to replace conventional plastic films in agricultural fields. However, their ecological effects on different microbial communities that naturally inhabit agricultural fields are scarcely explored. Herein, differences in bacterial communities recovered from biofilms, bulk soil, and rhizosphere soil were comparatively assessed for polyethylene film (PE) and biodegradable mulch film (BDM) application in peanut planted fields. The results showed that the plastic film type significantly influenced the bacterial community in different ecological niches of agricultural fields (P < 0.001). Specifically, BDMs significantly increased the diversity and abundance of bacteria in the rhizosphere soil. The bacterial communities in each ecological niche were distinguishable from each other; bacterial communities in the rhizosphere soil showed the most pronounced response among different treatments. Acidobacteria and Pseudomonas were significantly enriched in the rhizosphere soil when BDMs were used. BDMs also increased the rhizosphere soil bacterial network complexity and stability. The enrichment of beneficial bacteria in the rhizosphere soil under BDMs may also have implications for the observed increase in peanut yield. Deepening analyses indicated that Pseudoxanthomonas and Glutamicibacter are biomarkers in biofilms of PE and BDMs respectively. Our study provides new insights into the consequences of the application of different types of plastic films on microbial communities in different ecological niches of agricultural fields.


Subject(s)
Arachis , Microbiota , Rhizosphere , Bacteria , Soil , Plastics , Soil Microbiology
9.
J Hazard Mater ; 446: 130695, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36587593

ABSTRACT

Nitrogen (N) loss during composting reduces the quality of compost products and causes secondary environmental pollution. Phthalate esters (PAEs) are common pollutants in agricultural wastes. However, little information is currently available on how PAEs affect N conversion during agricultural waste composting. This research systematically analyzed the impact of di-n-butyl phthalate (DBP) pollution on the N conversion and its related microbial community during composting. Our results indicated that DBP stress results in a shorter thermophilic phase, and then slower compost maturation during composting. Notably, DBP stress inhibited the conversion of ammonia to nitrate, but increased the release of NH3 and N2O leading to an increased N loss and an elevated greenhouse effect. Furthermore, DBP exposure led to a reduction of bacteria related to NH4+ and NO3- conversion and altered the network complexity of the bacterial community involved in N conversion. It also reduced the abundance of a major nitrification gene (amoA) (P < 0.01) and increased the abundance of denitrification genes (nirK and norB) (P < 0.05). Moreover, DBP affected the overall microbial community composition at all tested concentrations. These findings provide theoretical and methodological basis for improving the quality of PAE-contaminated agricultural waste compost products and reducing secondary environmental pollution.


Subject(s)
Composting , Dibutyl Phthalate , Composting/methods , Nitrogen , Soil , Bacteria/genetics
10.
Environ Geochem Health ; 45(5): 1889-1903, 2023 May.
Article in English | MEDLINE | ID: mdl-35731356

ABSTRACT

Objectives of this study were to investigate the concentrations, distributions, toxicities, and risk assessment of 16 polycyclic aromatic hydrocarbons in surface soils surrounding a coal chemical industrial zone in the southeast of Shanxi province, China. A total of 52 topsoil samples were collected from different land-use areas: cereal agriculture, roadsides, and parkland. Results show that the total PAHs (∑16PAHs) ranged from 3.87 × 103 to 116 × 103 µg kg-1 and that the total carcinogenicity PAHs (∑BPAHs) ranged from 3.11 × 103 to 94.2 × 103 µg kg-1, with the highest concentration of ∑16PAHs noted in the RS samples, followed by PS and AS. The entire risk quotient of all PAH maximum permissible concentrations (RQ∑PAHMPCi) was greater than 1.0, and the minimum concentration entire risk quotient (RQ∑PAHNCi) of 84.3% of all samples was higher than 800. The value of the total toxicity equivalent concentration of PAH (PAHBapeq) for areas surrounding the coal chemical industrial zone was higher than the value of the standard level, and the incremental lifetime cancer risk (ILCR) far exceeds the U.S. EPA's risk standard. The toxic properties of PAHs indicated that the soils in the survey areas have a high risk to human health and the environment.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Humans , Soil/chemistry , Coal/toxicity , Coal/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Chemical Industry , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment , China
11.
Front Microbiol ; 13: 1032001, 2022.
Article in English | MEDLINE | ID: mdl-36353460

ABSTRACT

Bensulfuron methyl (BSM) is a widely used sulfonylurea herbicide in agriculture. However, the large-scale BSM application causes severe environmental problems. Biodegradation is an important way to remove BSM residue. In this study, an endophytic bacterium strain CD3, newly isolated from barnyard grass (Echinochloa crus-galli), could effectively degrade BSM in mineral salt medium. The strain CD3 was identified as Proteus sp. based on the phenotypic features, physiological biochemical characteristics, and 16S rRNA gene sequence. The suitable conditions for BSM degradation by this strain were 20-40°C, pH 6-8, the initial concertation of 12.5-200 mg L-1 with 10 g L-1 glucose as additional carbon source. The endophyte was capable of degrading above 98% BSM within 7 d under the optimal degrading conditions. Furthermore, strain CD3 could also effectively degrade other sulfonylurea herbicides including nicosulfuron, halosulfuron methyl, pyrazosulfuron, and ethoxysulfuron. Extracellular enzyme played a critical role on the BSM degradation by strain CD3. Two degrading metabolites were detected and identified by using liquid chromatography-mass spectrometry (LC-MS). The biochemical degradation pathways of BSM by this endophyte were proposed. The genomic analysis of strain CD3 revealed the presence of putative hydrolase or esterase genes involved in BSM degradation, suggesting that a novel degradation enzyme for BSM was present in this BSM-degrading Proteus sp. CD3. The results of this research suggested that strain CD3 may have potential for using in the bioremediation of BSM-contaminated environment.

12.
Huan Jing Ke Xue ; 43(10): 4489-4501, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224135

ABSTRACT

Modaomen Waterway is the main outlet of the Pear River system and an important water source for Zhuhai and Macao. The water quality of 13 sampling sites in Modaomen Waterway, phytoplankton, and environmental factors were investigated at 21 sampling sites in 4 drinking water source groups, which transport water from Modaomen Waterway and connect with each other, in August and October of 2021. A total of 73 genera of phytoplankton in eight phyla were identified, with a total of 150 species, most of them belonging to Cyanophyta, Chlorophyta, and Bacillariophyta. The relative abundance of Cyanophyta was higher than 90% in the DJS and YL reservoirs during flood and dry seasons; Cyanophyta, Chlorophyta, and Bacillariophyta were dominant phyla during different seasons; and their distribution was balanced in the ZXD and ZY reservoirs. The Shannon-Wiener index, Pielous uniformity index, and Margalef richness index showed that the ZY reservoir had the most abundant biodiversity, which indicated the best water quality, followed by the ZXD and YL reservoirs. Conversely, the DJS was the least diverse reservoir for phytoplankton. The PCoA analysis indicated significant differences in plankton structures in ZXD and ZY with the other two reservoirs (P<0.05), respectively. Redundancy analysis (RDA) showed that the main environmental factors affecting the distribution of the phytoplankton community were NO3-, TOC, TP, Cl-, and NH4+-N. These results indicated that the phytoplankton community of the four reservoirs were greatly affected by the nutrient salt caused by water transport, which suggested that the water quality of Modaomen Waterway should be improved to increase reservoir water nutrition to ensure the safety of drinking water sources.


Subject(s)
Chlorophyta , Cyanobacteria , Diatoms , Drinking Water , China , Phytoplankton , Rivers , Seasons , Water Quality
13.
Environ Res ; 215(Pt 2): 114409, 2022 12.
Article in English | MEDLINE | ID: mdl-36152886

ABSTRACT

Insect-associated bacteria play an important role in the resistance to pesticides, yet bacterial community compositions in wild insect host populations and the environmental factors that shape them are mostly elusive. In this study, Sitobion miscanthi (Takahashi) populations were collected from major wheat growing regions in China. Following high-throughput sequencing of 16S rRNA gene fragments, association analyses were performed within the bacterial community associated with S. miscanthi, as well as with population resistance levels to four commonly used pesticides and different environmental factors. We found that bacterial community structures differed in various regions, and that the abundances of dominant bacteria such as Buchnera, Candidatus Regiella, Candidatus Hamiltonella showed high variations. The resistance of S. miscanthi to avermectin and bifenthrin was shown to decline with increasing bacterial diversity. Meanwhile, with the increase of bacterial network modularity, the resistance of S. miscanthi populations to imidacloprid, avermectin and bifenthrin also increased correspondingly. In addition, correlation analysis indicated that altitude and air pressure had the strongest impact on bacterial community diversity and relative abundance, followed by humidity, rainfall and temperature. Overall, insights into such complex interactions between bacteria and their insect hosts offer new directions for biological pest control.


Subject(s)
Aphids , Microbiota , Pesticides , Animals , Aphids/genetics , Aphids/microbiology , Bacteria/genetics , Enterobacteriaceae , Insecticide Resistance , Ivermectin/analogs & derivatives , Pyrethrins , RNA, Ribosomal, 16S/genetics
14.
J Hazard Mater ; 436: 129306, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739802

ABSTRACT

To understand the effects of phthalic acid esters (PAEs) on humic acid (HA) conversion, enzymatic and specific metabolic dynamics during composting under di-n-butyl phthalate (DBP) stress were evaluated for the first time. The results indicated that HA conversion was mainly related to bacteria rather than fungi, with positive associations with Actinobacteria, Chloroflexi, and Gemmatimonadota (all P < 0.05), and negative associations with Proteobacteria and Bacteroidota (all P < 0.05), while DBP stress retarded HA formation by altering the core microbes related to HA formation and their metabolic functions. Moreover, typical hydrolase and oxidoreductase activities were altered under DBP stress, proteases and cellulases were hindered, and peroxidases as well as polyphenol oxidases were promoted during composting. Overall, our data shows that DBP stress can retard HA formation and compost maturation by interfering with microbial activity. This study provides potentially useful information for the degradation and reuse of PAE-contaminated waste.


Subject(s)
Composting , Phthalic Acids , Dibutyl Phthalate , Esters/metabolism , Humic Substances , Phthalic Acids/metabolism
15.
Environ Res ; 212(Pt B): 113290, 2022 09.
Article in English | MEDLINE | ID: mdl-35427593

ABSTRACT

Phthalic acid esters (PAEs) pollution has become a major environmental problem in agricultural waste composting. However, little information was available about the how the PAEs alter microbial processes during composting. This study investigated the effects of di-n-butyl phthalate (DBP) on bacterial biomass and community dynamics during composting. The results showed that a decreasing of DBP was observed from thermophilic phase and 43.26% of DBP was degraded after composting. The bacterial biomass and diversity during composting were reduced under DBP stress, so delaying the decomposition of organic matter. Moreover, the changes in bacterial community were observed since the thermophilic phase of DBP-contaminated composting. KEGG pathway analysis indicated that DBP stress decreased the relative abundance of the main metabolic pathways and inhibited compost maturation. Moreover, DBP stress had more significant correlation with the dominant bacteria. This work will expand the understanding of PAEs-contaminated organic waste composting and further control of PAEs pollutants.


Subject(s)
Composting , Phthalic Acids , Agriculture , Bacteria/metabolism , Biomass , Dibutyl Phthalate , Esters/metabolism , Phthalic Acids/metabolism
16.
J Hazard Mater ; 422: 126914, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34419851

ABSTRACT

Plasticizer phthalic acid esters (PAEs) are commonly found as contaminants in various soils. Previous studies indicated that their natural degradation can substantially differ among soil types; however, potential implications of the soil microbiome remained largely unexplored. Here, we have collected ten soil types from nine different geographical regions of China to investigate the degradation of DBP therein and role of bacteria in this process. Results showed that the degradation rate of DBP was lowest in nutrient-poor red soils from Jiangxi Province, while it was highest in fluvo-aquatic soil from Hebei Province. Bacterial community responses to DBP substantially differed in each of the analyzed soils. Arthrobacter is known for its broad-spectrum activity in terms of DBP degradation in soil and was therefore implemented as bioremediating inoculant in many polluted environments. In the present study, network analyses indicated that synergism between soil bacteria increased following exposure to DBP. Arthrobacter and Sphingomonas were found to expand their positive interactions with other members of the microbiome in DBP-contaminated soils. The overall findings of our study provide a basis for biomarker development for detection of DBP contaminations and an extended basis for future bioremediation approaches based on beneficial bacteria.


Subject(s)
Arthrobacter , Phthalic Acids , Soil Pollutants , Biodegradation, Environmental , Dibutyl Phthalate , Esters , Soil , Soil Pollutants/analysis
17.
Huan Jing Ke Xue ; 42(10): 4988-4997, 2021 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-34581143

ABSTRACT

Heavy metal pollution in rice fields leads to huge losses in rice yield every year and is thus of increasing concern. Therefore, it is important to understand the changes in the microecology and physicochemical properties of paddy soil under different levels of cadmium pollution. The purpose of this study was to investigate the response of the photosynthetic bacterial community in paddy soil to different cadmium pollution levels using 16S sequencing technology. The results showed that pH, total cadmium, and available cadmium content decreased gradually with the increase in cadmium pollution. The soil α diversity was slightly different in the high cadmium (Cd), medium Cd, and low Cd groups; however, the enriched photosynthetic populations and photosynthetic bacterial communities were significantly different among these groups. The effective connections between photosynthetic bacterial species in the high Cd group were significantly greater than those in the medium and low Cd groups, the connections were closer, and the density was higher. Alkaline nitrogen, pH, available (P/K), total (N/P), organic matter, total cadmium, and available cadmium were important factors affecting the photosynthetic bacterial community and were significantly correlated with the photosynthetic bacterial community, explaining 59.90% of the variation in the photosynthetic bacterial community. Effective Cd content was significantly positively correlated with Methylorubrum populi, Methylorubrum extorquens, Methylobacterium sp. Leaf125, and Rhodopseudomonas sp. AAP120 (R>0.05, P<0.05). This study will provide a theoretical basis for the microbial remediation of cadmium contamination in paddy fields. This study is important for understanding the effects of cadmium pollution on specific functional microbial populations in paddy soils.


Subject(s)
Methylobacteriaceae , Oryza , Soil Pollutants , Cadmium/analysis , Cadmium/toxicity , Soil , Soil Pollutants/analysis
18.
AMB Express ; 11(1): 103, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34245386

ABSTRACT

Concentrations of heavy metals continue to increase in soil environments as a result of both anthropogenic activities and natural processes. Cadmium (Cd) is one of the most toxic heavy metals and poses health risks to both humans and the ecosystem. Herein, we explore the impacts of Cd on a soil-plant system composed of oilseed rapes (Brassica napus and Brassica juncea) and bacteria. The results showed that Cd accumulation within tissues of two species of oilseed rapes enhanced with increasing concentrations of Cd in soils, and Cd treatment decreased their chlorophyll content and suppressed rapeseeds growth. Meanwhile, Cd stress induced the changes of antioxidative enzymes activities of both B. napus and B. juncea. Response to Cd of bacterial community was similar in soil-two species of oilseed rapes system. The impact of Cd on the bacterial communities of soils was greater than bacterial communities of plants (phyllosphere and endophyte). The α-diversity of bacterial community in soils declined significantly under higher Cd concentration (30 mg/kg). In addition, soil bacterial communities composition and structure were altered in the presence of higher Cd concentration. Meanwhile, the bacterial communities of bulk soils were significantly correlated with Cd, while the variation of rhizosphere soils bacterial communities were markedly correlated with Cd and other environmental factors of both soils and plants. These results suggested that Cd could affect both the growth of plants and the indigenous bacterial community in soil-plant system, which might further change ecosystem functions in soils.

19.
Article in English | MEDLINE | ID: mdl-34236956

ABSTRACT

A mixotrophic and acidophilic bacterial strain BGR 140T was isolated from mine tailings in the Harz Mountains near Goslar, Germany. Cells of BGR 140T were Gram-stain-positive, endospore-forming, motile and rod-shaped. BGR 140T grew aerobically at 25-55 °C (optimum 45 °C) and at pH 1.5-5.0 (optimum pH 3.0). The results of analysis of the 16S rRNA gene sequences indicated that BGR 140T was phylogenetically related to different members of the genus Sulfobacillus, and the sequence identities to Sulfobacillus acidophilus DSM 10332T, Sulfobacillus thermotolerans DSM 17362T, and Sulfobacillus benefaciens DSM 19468T were 94.8, 91.8 and 91.6 %, respectively. Its cell wall peptidoglycan is A1γ, composed of meso-diaminopimelic acid. The respiratory quinone is DMK-6. The major polar lipids were determined to be glycolipid, phospholipid and phosphatidylglycerol. The predominant fatty acid is 11-cycloheptanoyl-undecanoate. The genomic DNA G+C content is 58.2 mol%. On the basis of the results of phenotypic and genomic analyses, it is concluded that strain BGR 140T represents a novel species of the genus Sulfobacillus, for which the name Sulfobacillus harzensis sp. nov. is proposed because of its origin. Its type strain is BGR 140T (=DSM 109850T=JCM 39070T).


Subject(s)
Clostridiales/classification , Mining , Phylogeny , Bacterial Typing Techniques , Base Composition , Clostridiales/isolation & purification , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Germany , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Front Microbiol ; 12: 629852, 2021.
Article in English | MEDLINE | ID: mdl-33664718

ABSTRACT

Microbial communities associated with the plant phyllosphere and endosphere can have both beneficial as well as detrimental effects on their hosts. There is an ongoing debate to which extend the phyllosphere and endosphere microbiome assembly is controlled by the host plant how pronounced cultivar effects are. We investigated the bacterial and fungal communities from the phyllosphere and endosphere of 10 different rice cultivars grown under identical environmental conditions in the frame of a targeted approach to identify drivers of community assembly. The results indicated that the endophytic bacterial communities were clearly separated into two groups. The α-diversity and microbial network complexity within Group I were significantly lower than in Group II. Moreover, the genera Nocardioides, Microvirga, and Gaiella were significantly more abundant in Group II and only present in the interaction networks of this group. These three genera were significantly correlated with α- and ß-diversity of the endophytic bacterial community and thus identified as major drivers of the endosphere community. We have identified keystone taxa that shape endophytic bacterial communities of different rice cultivars. Our overall findings provide new insights into plant-microbe interactions, and may contribute to targeted improvements of rice varieties in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...